
Vision, Modeling, and Visualization (2010)

Parallel View-Dependent Out-of-Core Progressive Meshes

Evgenij Derzapf1, Nicolas Menzel1, and Michael Guthe1

1Graphics and Multimedia Group, FB12, Philipps-Universität Marburg, Germany

Abstract

The complexity of polygonal models is growing faster than the ability of graphics hardware to render them in
real-time. If a scene contains many models and textures, it is often also not possible to store the entire geometry
in the graphics memory. A common way to deal with such models is to use multiple levels of detail (LODs), which
represent a model at different complexity levels. With view-dependent progressive meshes it is possible to render
complex models in real time, but the whole progressive model must fit into graphics memory. To solve this problem
out-of-core algorithms have to be used to load mesh data from external data devices. Hierarchical level of detail
(HLOD) algorithms are a common solution for this problem, but they have numerous disadvantages. In this paper,
we combine the advantages of view-dependent progressive meshes and HLODs by proposing a new algorithm for
real-time view-dependent rendering of huge models. Using a spatial hierarchy we extend parallel view-dependent
progressive meshes to support out-of-core rendering. In addition we present a compact data structure for progres-
sive meshes, optimized for parallel GPU-processing and out-of-core memory management.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Genera-
tionDisplay algorithms Computer Graphics [I.3.5]: Computational Geometry and Object ModelingCurve, surface,
solid, and object representations Computer Graphics [I.3.1]: Hardware architectureParallel processing

1. Introduction

The need for high quality polygonal models in interactive
applications is constantly increasing. Despite the enormous
processing power of the graphics processor (GPU), highly
detailed models cannot be rendered in real-time. Often they
even do not fit into graphics memory since a scene may con-
tain several of them. To solve this problem the number of
triangles must be reduced.

One possibility is to use static or dynamic levels of detail
(LODs). Static LODs are easy to use, but suffer from visible
transitions, so called popping artifacts, when switching be-
tween levels. Additionally, the memory overhead compared
to an ordinary mesh is typically about 50%. Dynamic LODs
use a continuous sequence of the simplification operations.
Therefore popping artifacts are less visible. Another advan-
tage is that the dynamic LODs can be extended to view-
dependent LOD and thus do not use more triangles than nec-
essary. Recently proposed parallel adaption algorithms run-
ning on the GPU make it possible to render large progressive
meshes in real-time. One limitation of these algorithms is
however, that the whole model must fit into graphics mem-

ory. This constraint does not allow for the rendering of huge
models exceeding the amount of available graphics memory.

Hierarchical levels of detail (HLODs) solve the memory
problem by partitioning the models using a spatial hierarchy
and generating a level of detail for each node. If static LODs
are used, a fully view-dependent adaption is not possible.
The frame rate fluctuates and can drop severely when many
nodes need to be transferred between subsequent frames. Us-
ing dynamic LODs for each node improves the adaption ef-
ficiency, but the frame time still significantly increases when
different nodes are required than in the previous frame. In
addition, the cuts between the spatial hierarchy nodes com-
plicate the simplification which also slightly increases the
number of rendered triangles.

In this paper we try to solve both problems of HLODs
by expanding the approach of [DMG10] for out-of-core pro-
gressive meshes. Our main contributions are:

• A view-dependent out-of-core progressive mesh data
structure which can also be used for occlusion culling.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

• No simplification constraints between nodes of the spatial
hierarchy.

• A massively parallel adaption algorithm with stable, real-
time frame rates.

The remainder of this paper is structured as follows: in Sec-
tion 2 we give an overview of existing techniques. In Sec-
tion 3 the proposed out-of-core data structure is explained in
detail. In Section 4 we then introduce the out-of-core mem-
ory management and the modifications of the parallel adap-
tion algorithm for real-time rendering. Finally we evaluate
our approach in Section 5.

2. Related Work

View-dependent simplification has been an active field of
research over the last two decades. Hoppe introduced pro-
gressive meshes (PM) that smoothly interpolate between dif-
ferent levels of detail [Hop96]. Depending on the view po-
sition and distance, a sequence of split- or collapse opera-
tions can be performed for each vertex to generate a view-
dependent simplification. The inter-dependency of split op-
erations can either be encoded explicitly [XV96] or implic-
itly [Hop97]. Hoppe later optimized the data structures for
the operations and improved the performance of the refine-
ment algorithm [Hop98]. Pajarola and Rossignac [PR00] in-
troduced compressed progressive meshes, where the input
mesh is simplified in batches. A batch is created by selecting
the first 11% of non-adjacent edges from the priority queue.
All of these edge-collapses have to be performed in parallel.
This allows for a very compact coding, but view-dependent
adaption is not possible. Pajarola and DeCoro [Paj01,PD04]
developed an optimized sequential view-dependent refine-
ment algorithm. Their FastMesh is based on the half-edge
data structure and manages split-dependencies by storing a
collapse-operation for each half-edge. In total this requires
24 additional bytes per vertex of the adapted mesh. Hu et
al. [HSH09] proposed a parallel adaption algorithm for pro-
gressive meshes. They introduced a compact explicit depen-
dency structure that allows to group vertex splits and half-
edge collapses into parallel steps. The drawbacks of this
technique are the explicit dependency that needs additional
memory and that only half-edge collapses are supported. In
recent progressive mesh representations however the edge
collapse operation with optimized vertex position and at-
tributes is used. The advantage over the half-edge collapse
is that it produces simplifications with significantly higher
quality and thus less triangles for a given accuracy. In ad-
dition to that, the rendering performance is also degraded
by using a single vertex array containing all vertices and at-
tributes of the original mesh. A more compact progressive
meshes data structure for parallel adaption was proposed by
Derzapf et al. [DMG10]. They introduced a random access
compact data structure based on Hoppe’s original refiment
algorithm [Hop98] with a massively parallel adaption algo-
rithm for real-time rendering of large models.

For huge models none of these approaches is suitable
since they all require the complete progressive mesh to fit
into main and/or graphics memory. For models exceeding
the available amount of memory, hierarchical levels of detail
(HLODs) were proposed which only require the currently
needed LODs to be kept in memory. In addition, they allow a
LOD selection that is performed per node. The first approach
has been introduced by Erikson et al. [EMB01]. The prob-
lem of this technique is that no simplification along the cuts
between hierarchy nodes is possible without introducing vis-
ible gaps. Constraining the simplification however leads to a
significant increase of the number of primitives and thus low
frame rates. Guthe et al. [GBK04] solved this problem by
using an unconstrained simplification of the parts. The gaps
are then filled during rendering using line strips. Cignoni et
al. proposed a different solution by creating alternating di-
amond shaped hierarchies [CGG∗04]. This way the trian-
gles along a node boundary can be simplified at coarse lev-
els. Finally, Borgeat et al. proposed to use geomorphing to
simplify the triangles along node boundaries during render-
ing [BGB∗05]. Unfortunately, the transform performance is
approximately halfed this way such that the previous two ap-
proaches are faster in almost any cases. On the other hand,
popping artifacts are drastically reduced due to smoother
LOD transitions. Sander et al. [SM06] proposed an algo-
rithm that performs geomorphing on the GPU to render a
given mesh. This approach extends the idea of Borgeat et al.
and applies geomorping on all triangles. The clustered hier-
archy of progressive meshes (CHPM) approach of Yoon et
al. [YSGM04] was the first to combine HLOD and progres-
sive meshes. For each node, a progressive mesh is stored
to allow for smoother LOD transition, but still fully view-
dependent adaption is not possible, due to the use of view-
independent adaption.

3. Out-of-Core View-Dependent Progressive Mesh

The proposed view-dependent out-of-core refinement al-
gorithm is based on the in-core algorithm of Derzapf et
al. [DMG10] which we briefly describe before discussing
our modifications. After building a progressive mesh, a
view-dependent reconstruction is generated by performing
only those split operations necessary for the current view.
During this process the local ordering of operations needs to
be preserved. This leads to the dependency rules formulated
by Hoppe [Hop97]:

• The ordering of operations applied to a single vertex must
be preserved.

• A split can only be applied if the next split operation of
each neighboring vertex was generated earlier during sim-
plification.

• Edge collapse operations are only legal if the next collapse
of each neighboring vertex was created later.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

The first dependency rule can be efficiently encoded in a
forest of binary trees as shown in Figure 1. For each vertex
of the base mesh, a binary tree is constructed.

Figure 1: Split/collapse operation hierarchy represented as
a forest of binary trees.

The operation indices cannot be used to preserve the local
ordering because their sequence is not preserved. Therefore
the neighborhood dependency is encoded explicitly for each
operation. For compact encoding the main idea is to con-
struct consecutive independent sets:

1. Start with base mesh Mi = M0.
2. Store all currently possible operations in level i.
3. Perform all operations of level i on Mi to construct Mi+1.
4. Increment i and continue with the second step until no

operations are left.

The split level is then stored for each operation and the lo-
cal ordering is preserved if only the vertex with lowest level
in each face is split. Accordingly, only the vertex with the
highest level in each face can be collapsed.

A compact data structure is used to store the topology and
attribute modifications of each operation. The up to two new
faces created by a split operation are defined by two neigh-
bor vertices vl and vr. These are stored by first defining an
ordering on the vertex neighborhood. For this purpose an op-
eration index i is used and the index of each vertex is either
its base mesh index or the operation index plus the number of
base mesh vertices. Then, vl and vr are encoded by their rank
in the ordered sequence of neighbor vertices. In the example
shown in Figure 2, the ranks are 0 and 4. In addition, the
connectivity modifications are encoded using an ordering of
the neighbor triangles. The triangle index is calculated anal-
ogously to the vertex index. A bit flag is then set to one for
each triangle adjacent to vu after the split. In Figure 2 the
modified faces and the resulting bit vector are shown.

Both, the ranks of vl and vr, and the bit flag are encoded
with fixed length variables. The valence of the vertices is
restricted to 15 and the number of neighbor faces to 16.
Thus 8 bits are sufficient for the new faces and 16 bits for
the connectivity modifications. Vertices with higher valence
are not collapsed during simplification. As the collapse of
two neighbor vertices reduces their valence they will be col-
lapsed at a later stage if suitable.

Figure 2: Example of topology encoding.

In addition to the topology, the attribute differences (posi-
tion, normal, texture coordinates etc.) of v and vu are stored.
First, each attribute is scaled such that the variances are con-
fined to the same range. Then the differences are scaled to
the range [−1,1] per operation and quantized to n bits using
a cubic function. To reduce the quantization error, dummy
splits are introduced if necessary. For the refinement crite-
ria, the simplification distance, normal cone angle, and the
ratio of geometric to attribut error are stored.

The adaption algorithm additionally maintains a few dy-
namic data structures. They store the split hierarchy as well
as a dynamically updated vertex buffer and index buffer.
The main data structures required for rendering are the ver-
tex buffer, which contains the position and attributes of the
adapted vertex and the index buffer that contains the con-
nectivity. Both are stored as vertex buffer objects (VBOs)
and are therefore separated from all other data. Together they
form the indexed face set that is used for rendering. To store
the prefix sum, neighborhood and collapse information ad-
ditional memory is required.

3.1. Spatial Operation Hierarchy

For out-of-core rendering we now build a spatial hierarchy
of split/collapse operations. The advantage over previous ap-
proaches is that this way no special boundary constraints be-
tween adjacent hierarchy nodes are introduced. The hierar-
chy serves two purposes: first of all, the operations should
be grouped such that those which are likely to be performed
simultaneously or successively are stored together. In addi-
tion, it is also to be used for occlusion culling in order to
coarsen invisible parts of the model. During hierarchy con-
struction it thus needs to be optimized for both purposes.

For occlusion culling, Meißner et al. [MBH∗01] proposed
a simple heuristic to construct efficient kd-tree hierarchies
for triangle meshes using a greedy algorithm. It is based on
the idea to minimize the total area of all bounding boxes
in a hierarchy with a fixed maximum number of triangles
nmax per leaf node. Starting from the root node, an optimal
partition with respect to an estimated total bounding box area

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

is performed. The area A is estimated as:

A ≈ Al

(
1+ log2

⌈
nl

nmax

⌉)
+Ar

(
1+ log2

⌈
nr

nmax

⌉)
,

where Al and Ar are the bounding box areas of left and right
child node and nl and nr the respective number of triangles.
Finding the optimal split is performed by sorting the trian-
gles in x-, y-, and z-direction and then calculating the esti-
mated area for all ordered partitions.

In contrast to a hierarchy for triangles, we do not only
store operations at leaf level but also at inner nodes to recon-
struct coarse approximations of the model. When process-
ing a node, we first need to determine the operations that are
stored in the current node. Then their subtrees are partitioned
into the child nodes. Finding the directly stored operations
is rather straightforward as those with the highest simplifi-
cation error are required first. Since we do not want to skip a
node for two successive refinements of a vertex, we first add
all operations which are referenced from the previous node.
For the root node, these are the operations of the base mesh.
When the operations are stored in the current node their next
operations are partitioned into the child nodes. This way a
complete operation subtree is stored in a single subtree. Due
to storing operations not only at the leaf nodes, the estimated
area is slightly different than in the approach of Meißner et
al.:

A ≈ Al log2

⌈
nl

nmax +1

⌉
+Ar log2

⌈
nr

nmax +1

⌉
,

where n∗ now is the number of operations.

3.2. Tree Structure

The child relations of the operation tree are encoded by stor-
ing the operations relative to the current node. The relative
indices are stored as cl for left and cr for right child opera-
tion. Each operation is accessed using two values: the node
index in and the local index of the operation in this node il .
A unique global index i which is required later can be com-
puted as:

i = nmaxin + il

The node and local index of the child nodes are calculated
as follows:

in,l/r =

cl,r < nmax : in
nmax ≤ cl/r < 2nmax : le f t_child(in)
cl,r ≥ 2nmax : right_child(in)
else : no operation

il,l/r = cl/r mod nmax,

where in is the node of the current operation.

To lessen the constraint of 256 split levels as in the in-
core case, we use 10 bits instead of only a single byte for
the level. Together with 11 bits for each of the child indices,
the ordering and dependency are encoded in four bytes per

operation. Using the index coding described above, up to 682
operations can be stored per node.

3.3. Data Structures

In contrast to the in-core algorithm we only store the cur-
rently required parts of the static data in graphics memory.
By using these data structures, the view-dependent mesh can
be refined and rendered in real-time with minimal memory
requirements. Table 1 shows the static and dynamic data
structures required to maintain and update the vertex and in-
dex buffers in detail. Differences to the in-core algorithm
are marked in blue. Since the complete algorithm runs on
the GPU, all the relevant data is stored in graphics mem-
ory and the main memory consumption is minimal. Besides
temporary memory for loading, only the mapping of nodes
to memory positions and file offsets required for out-of-core
management are stored in main memory.

buffers elements memory (bytes)
static structures

nodes

nodes 8o
offset 4o
visibility 1o

operations

tree structure 3n
dependency 1n
ref. criteria 3n
topology 3n
quant. delta 2kn
delta scale 2n

dynamic structures

active faces
index VBO 24m
triangle ID 8m

active vertices

vertex VBO 4km
vertex ID 4m
node ID 4m
local ID 2m
next collapse 4m
vstate 1m

collapse tree
node ID 4m
local ID 2m
prev. collapse 4m
vu 4m

temporary
prefix sum 24m
neighb. size 1m
neighb. index 16m

total 13o+(12+2k)n
+(102+4k)m

Table 1: Elements of the data structure. o, k, n, and m are the
number of operation nodes, attributes, operations in graph-
ics memory, and vertices of the adapted mesh.

As the operations are referenced using a node and a local
ID, we store these instead of the next split or collapse opera-
tion index. To apply the operations we also need to store the
operation hierarchy. To determine which nodes are loaded,
we additionally store pointers of the operation nodes in de-
vice memory. For occlusion culling we additionally store

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

the visibility of the nodes. In summary, the out-of-core data
management requires 1.875 additional bytes for each oper-
ation, 4 bytes for each active vertex and 13 bytes for each
node. As each node stores many operations, their number is
rather low. In total we require 1.875n+ 4m+ 13o bytes ad-
ditional memory for the out-of-core data management com-
pared to [DMG10]. On the other hand, the memory require-
ments for the static data are drastically reduced as only a
subset of the operations is kept in graphics memory.

4. Runtime Algorithm

For the dynamic data structures we use the same block based
memory management as Derzapf at al. [DMG10], but addi-
tionally introduce an out-of-core management for the static
data structures.

4.1. Out-of-Core Memory Management

The operations and attributes are subdivided into the nodes
described above and stored in a large file. Then only the cur-
rently necessary nodes are loaded into graphics memory. A
node is required when at least one of the active vertices or
collapses has a reference to it. A split operation can create
vertices that reference nodes not available in graphics mem-
ory. In this case, we load this node from disk into graphics
memory. Before loading the currently required nodes we first
remove all inactive ones.

Since accessing the hard disk is a severe bottleneck, load-
ing nodes into main memory is preformed in a second thread.
As soon as the data is available in main memory, the ren-
dering thread can copy it into graphics memory. To pre-
vent strong frame rate fluctuations we only load a maxi-
mum number of lmax nodes per frame, because the memory
transfer to the graphics card is relatively expensive. This ap-
proach slightly slows down the adaption, but guarantees sta-
ble frame rates. If the number of required nodes exceeds lmax
we load the ones that were requested the highest number of
consecutive frames. This has the advantage that the model is
uniformly adapted and no LOD starvation can occur.

The operation memory is shared for all progressive mod-
els of the scene and a maximum number of nodes omax kept
in graphics memory is specified. If the number of totally re-
quired nodes exceeds omax, a global level of detail scaling
factor is used to coarsen all models until enough memory is
available. If later more free node are available the factor is
gradually reduced again.

4.2. Parallel Adaption Algorithm

In order to optimally exploit the parallel architecture of the
GPU, the adaption algorithm is subdivided into several con-
secutive steps. Each step is then performed in parallel. The
algorithm is based on 4 bit-states to encode possible and nec-
essary operations and 2 temporary states for collapsed and

removed vertices. It is composed of the five following main
stages, where the first three steps are similar to the in-core
variant.

In the first step we update the state of the vertices, where
the refinement criteria determine which vertices need to be
split and which can be collapsed. In addition to the origi-
nal refinement criteria – i.e. view-frustum culling, back-face
culling and projected error – we also use occlusion culling
to further reduce the number of active vertices. The occlu-
sion culling is based on the operation nodes whose visibility
is determined after rendering. If the next split or collapse of
a vertex is in an occluded node, the vertex itself is marked
as invisible. After checking if a vertex is occluded, we test
the original refinement criteria to determine which opera-
tions need to be performed. When the necessary operations
are determined, we need to force splits of neighbor vertices
due to the face dependencies and remove of all impossible
operations. Since not all static data is available in graphics
memory, we have to check whether the required operation
and the operations of its neighbor vertices are available. If
this is not the case, we need to delay the operation.

In a second step we apply all remaining operations. For
this purpose we first collect the neighborhood of the split
vertices and then perform the split operations. Applying a
split operation includes generating the new vertex vu, mov-
ing the vertex v and creating two new faces fl and fr. After
the split operations the collapse operations are performed.
For each collapse vertex v the corresponding vertex vu is re-
moved, the faces are updated and degenerate ones are re-
moved.

The third step of the adaption is the compaction of buffers
where elements have been removed. These buffers are the
active vertices (including the vertex VBO), active faces (with
the index VBO), and collapse operations. To improve ren-
dering performance, the index VBO is periodically sorted to
exploit vertex caching.

Finally we determine which of the nodes are occluded to
use this information for the next frame. For this purpose we
use hardware occlusion queries [CCG∗01] and render the
bounding boxes of the nodes. The query is performed after
rendering the complete scene and the result is fetched before
the next parallel adaption. This way the visibility is lagging
one frame behind which is not problematic as it is only used
for LOD selection, but not for rendering. Regardless of the
query results we always render the complete adapted mesh.
This approach is very efficient because the number of the
active nodes is small compared to the number of triangles,
we only use asynchronous queries, and only require a single
switch between rendering and occlusion queries per frame.

4.3. Prefetching

When the user moves through the screen, the visible portions
and the required LOD of the object change. This results in a

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

continuous change of the nodes currently required in device
memory. Due to the high latency of the hard disk, loading
out-of-core data results in a visible delay of the mesh re-
finement. We solve this problem with a two-step prefetching
algorithm: First, we do not only load the currently required
nodes, but also their direct children if enough space is avail-
able. In addition, we extrapolate the current camera move-
ment and enlarge the view frustum to contain all frusta of the
subsequent 10 frames. This results in a dynamic adaption of
the view frustum, which means that we pre-refine parts of
the model before they become visible.

Note that the prefetching algorithm is memory sensitive:
it only works if enough memory is available on the device.
This is achieved by assigning a low priority to all prefetching
candidates, so these nodes are only processed after all other
ones are loaded.

5. Results

Our test system is built of a 2.4 GHz Intel Core2 Duo CPU
with 2 GB of DDR2 main memory, 16 lanes PCIe slot, and
a GeForce GTX 480 where we use the OpenGL API for ren-
dering. The out-of-core progressive meshes are stored on a
Seagate SATAII hard disk with 7200 rpm and 32 MB cache.
The access time is 8.5 ms and approximately 100 MB can
be read per second. We use a resolution of 1920× 1080 in
all experiments. Table 2 gives an overview of the progressive
meshes we used in our experiments.

model v0 f0 # ops. # dummy ops. lvl. nodes
Asian Dragon 40 19 3,612,383 2968 (0.08%) 213 5507
David 659 1416 3,615,968 2529 (0.07%) 276 5536
Statuette 16 40 5,014,234 14254 (0.28%) 212 7678
Lucy 15 29 14,040,204 24681 (0.17%) 268 21421
Sponza scene 730 1504 26,282,789 44432 (1.69%) 276 40142

Table 2: Progressive meshes used in our experiments, num-
ber of base mesh vertices, base mesh faces, operations,
added dummy split operations, maximum split level and
nodes.

All models use position and normal as vertex attributes
only (i.e. k = 6 attributes). The resulting file sizes – com-
pared to an indexed face set – are listed in Table 3. The file
size reduction is almost identical for all models and is ap-
proximately 50% due to identical number of attributes. Note

model vmax fmax mem. IFS mem. PM
Asian Dragon 3,609,455 7,218,906 165.2MB 82.9MB (50.2%)
David 3,614,098 7,227,031 165.4MB 83.0MB (50.2%)
Statuette 4,999,996 10,000,000 228.8MB 115.0MB (50.2%)
Lucy 14,027,872 28,055,742 642.2MB 322.1MB (50.2%)
Sponza scene 26,251,421 52,501,679 1201.6MB 603.0MB (50.2%)

Table 3: Number of original mesh vertices and faces and
comparison of the static data (PM) to an indexed face set
(IFS).

that HLODs and Quick-VDR both need 50% to 80% more
disk storage than an indexed face set.

Table 4 shows the number of rendered faces, the total
rendering time, and the memory consumption for the views
shown in Figure 3 and the Sponza scene in the accompanied
video, where the numbers are taken from the most complex
frame. For the Asian Dragon, David and Statuette we used
4096 nodes (64.0 MB). For the Lucy and Sponza scene we
used 6144 nodes (95.9 MB), whereas each node contains
682 operations. During rendering, the dynamic data struc-
tures consume additional memory. For all models, the total
amount of graphics memory nevertheless stays below that of
an indexed face set. The savings to an IFS are about 30%
for the medium sized and up to 82% for larger models. This

model rendered memory total frame
faces (MB) time (ms)

Asian Dragon 853,667 (11.8%) 112.07 (67.9%) 11.0 (89.7%)
David 916,044 (12.6%) 115.48 (69.8%) 11.8 (87.0%)
Statuette 1,450,698 (14.5%) 144.05 (62.9%) 18.7 (88.0%)
Lucy 2,125,849 (7.6%) 224.59 (34.9%) 24.9 (20.3%)
Sponza scene 2,116,626 (4.0%) 220.65 (18.3%) 33.2 (19.8%)

Table 4: Memory consumption and total rendering time of
the different models. The ratio compared to rendering an in-
dexed face set of the original model is shown in parenthesis.

Figure 3: Renderings of view-dependently refined meshes.
The images on the left show the models as rendered from the
point of view. In the middle external views with the view frus-
tum (yellow) are shown. The color coding depicts the level
of detail, where red is low LOD and green high. The image
on the right shows the nodes used for occlusion culling. Oc-
cluded nodes are shown in red and visible ones in green.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

allows to safe up to 1 GB of graphics memory for the sponza
scene and over 80% of the rendering time. Figure 3 also
shows the coarsening of the back faces, faces outside the
view frustum and occluded ones.

Table 5 shows the number of rendered faces, the total ren-
dering time and the memory consumption of the in-core al-
gorithm for identical views. Comparisons to David, Lucy
and Sponza scene are not possible, because the split level
is too high. With the occlusion-culling we reduce the num-
ber of active faces significantly (over 50%). Additionally, we
need about 44% less memory and up to 29% less rendering
time for identical views.

model rendered memory total frame
faces (MB) time (ms)

Asian Dragon 1,740,953 (+103.9%) 174.02 (+55.3%) 15.4 (+40.0%)
Statuette 2,536,238 (+74.8%) 246.25 (+70.9%) 21.1 (+12.9%)

Table 5: Memory consumption and total rendering time of
the approach of Derzapf et al. [DMG10]. The ratio com-
pared to the values in the Table 4 for identical views.

Compared to static hierarchical LODs (HLODs)
[GBBK04] using the same error measure, the number of
primitives is reduced by a factor of 3 to 5 and the frame
rate improves by a factor between two and three. On our
test system, for the David model and identical view, the
HLOD rendering requires approximately 4.1 M faces, 175
MB graphics memory and 56 ms (17.8 fps) for rendering.
When the LOD switches, the frame rate can even drop
below 10 fps. This is due to the fact that the LODs can
only be selected based on the viewing distance as only a
single mesh is stored per node. The performance of Quick-
VDR [YSGM04] is only slightly better than static HLODs
while the number of triangles is approximately halved. On
our test system, for the David model and identical view,
Quick-VDR requires approximately 2.1 M faces, 200 MB
graphics memory, 600 MB main memory and achieves
25-30 fps. Additionally, the adaption of the Quick-VBR is
very slow. It achieves approximately 60 k operations per
second on our test system whereas our approach achieves
over 1.2 M operations per second.

Figure 4 shows the adaption and rendering time, the mem-
ory consumption, and the number of active faces for a
pre-recorded movement for the Asian Dragon. The frame
time and consumed graphics memory is always significantly
lower than required by the in-core algorithm, because we re-
duce the number of active faces with the occlusion-culling
significantly (up to 60%). In addition to the reduced frame
time we require up to 50% less memory.

Figure 5 shows the adaption and rendering time together
with the memory consumption and the number of active
faces for a pre-recorded movement through the Sponza
scene. The consumed graphics memory is always below 220
MB. The frame rate is constantly about 50 frames per sec-
ond, with some drops down to 40 fps. The number of faces

Figure 4: Comparison of timings, memory consumption and
number of active faces of our approach (OOC) with in-core
algorithm for the Asian Dragon with a pre-recorded camera
path.

Figure 5: Timings, memory consumption and number of
faces for the Sponza scene with a pre-recorded camera path.

during the walk through slightly exceeds 2 millions in some
situations. Our approach quickly reacts to changes of the
view direction with fast adaption of the scene complexity.

Since the rendering performance is identical to render-

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Out-of-Core Progressive Meshes

ing a static model with the same number of triangles, our
method needs approximately five times as long as render-
ing a static mesh. Considering that we already cut down the
vertices significantly due to the simplification of back-faces,
faces outside the view frustum and occluded faces. We can
conclude that our method will almost always be faster than
rendering an indexed face set of the original model. While
this even holds for rather coarse models, the performance
gain increases with the complexity of the original mesh. Due
to the time required for the pixel shaders, the speedup is of
course not linear with the reduction.

6. Conclusion and Limitations

We have proposed an out-of-core progressive mesh repre-
sentation that was specifically developed for parallel refine-
ment on modern graphics hardware. Our algorithm extends
the approach of Derzapf et al. [DMG10] with out-of-core
data management and is the first out-of-core approach that
is completely based on view-dependent progressive meshes.
The dependency and operation coding are modified for large
models and the dynamic data structures, static data struc-
tures, and first three steps of the algorithm are extended for
out-of-core data management. In addition we propose a spa-
tial hierarchy for the operations that is also used for occlu-
sion culling.

We remove more than two thirds of the vertices by view-
dependent simplification compared to HLODs. Due to the
much finer granularity, this reduction is practically always
surpassed. Compared to HLODs we thus more than double
the frame rate. In addition, the frame rate drop when chang-
ing the LOD is insignificant whereas for HLODs the frame
rate can drop by a factor of more than two.

One limitation of our algorithm is that an additional mem-
ory reduction would be possible by using a generalized tri-
angle strip. Another, probably more severe limitation is that
some splits are postponed several frames as they are waiting
for others to be applied before them. Although this is only
problematic for fast panning over the model, a less restrictive
dependency scheme would be desirable.

References

[BGB∗05] BORGEAT L., GODIN G., BLAIS F., MASSICOTTE

P., LAHANIER C.: Gold: interactive display of huge colored and
textured models. ACM Trans. Graph. 24, 3 (2005), 869–877. 2

[CCG∗01] CUNNIFF R., CRAIGHEAD M., GINSBURG D.,
LEFEBVRE K., LICEA-KANE B., TRIANTOS N.: ARB oc-
clusion query. Tech. rep., NVIDIA and ATI, 2001. http://oss.
sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt
(23.03.2010). 5

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Trans. Graph. 23, 3 (2004),
796–803. 2

[DMG10] DERZAPF E., MENZEL N., GUTHE M.: Parallel view-
dependent refinement of compact progressive meshes. In Eu-
rographics Symposium on Parallel Graphics and Visualization
(2010). 1, 2, 5, 7, 8

[EMB01] ERIKSON C., MANOCHA D., BAXTER III W. V.:
Hlods for faster display of large static and dynamic environments.
In I3D ’01: Proceedings of the 2001 symposium on Interactive
3D graphics (New York, NY, USA, 2001), ACM, pp. 111–120. 2

[GBBK04] GUTHE M., BORODIN P., BALÁZS Á., KLEIN R.:
Real-time appearance preserving out-of-core rendering with
shadows. In Rendering Techniques 2004 (Proceedings of Eu-
rographics Symposium on Rendering) (2004), Keller A., Jensen
H. W., (Eds.), Eurographics Association, pp. 69–79 + 409. 7

[GBK04] GUTHE M., BORODIN P., KLEIN R.: Efficient view-
dependent out-of-core visualization. vol. 5444, pp. 428–438. 2

[Hop96] HOPPE H.: Progressive meshes. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 1996),
ACM, pp. 99–108. 2

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Publishing
Co., pp. 189–198. 2

[Hop98] HOPPE H.: Efficient implementation of progressive
meshes. Computers & Graphics 22, 1 (1998), 27–36. 2

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2009), ACM, pp. 169–176. 2

[MBH∗01] MEISSNER M., BARTZ D., HÜTTNER T., MÜLLER

G., EINIGHAMMER J.: Generation of Decomposition Hierar-
chies for Efficient Occlusion Culling of Large Polygonal Models.
In Vision, Modeling, and Visualization (2001), pp. 225–232. 3

[Paj01] PAJAROLA R.: Fastmesh: Efficient view-dependent mesh-
ing. Computer Graphics and Applications, Pacific Conference on
0 (2001), 0022. 2

[PD04] PAJAROLA R., DECORO C.: Efficient implementation of
real-time view-dependent multiresolution meshing. IEEE Trans-
actions on Visualization and Computer Graphics 10, 3 (2004),
353–368. 2

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed progres-
sive meshes. IEEE Transactions on Visualization and Computer
Graphics 6, 1 (2000), 79–93. 2

[SM06] SANDER P. V., MITCHELL J. L.: Progressive buffers:
view-dependent geometry and texture lod rendering. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses (New York, NY,
USA, 2006), ACM, pp. 1–18. 2

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-dependent
simplification for polygonal models. In VIS ’96: Proceedings
of the 7th conference on Visualization ’96 (Los Alamitos, CA,
USA, 1996), IEEE Computer Society Press, pp. 327–ff. 2

[YSGM04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA

D.: Quick-vdr: Interactive view-dependent rendering of massive
models. In VIS ’04: Proceedings of the conference on Visualiza-
tion ’04 (Washington, DC, USA, 2004), IEEE Computer Society,
pp. 131–138. 2, 7

c© The Eurographics Association 2010.

http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt

